To view prices and purchase online, please login or create an account now.



Thermodynamics, Kinetics, and Microphysics of Clouds

Hardback

Main Details

Title Thermodynamics, Kinetics, and Microphysics of Clouds
Authors and Contributors      By (author) Vitaly I. Khvorostyanov
By (author) Judith A. Curry
Physical Properties
Format:Hardback
Pages:800
Dimensions(mm): Height 260,Width 182
Category/GenreChemistry
Meteorology and climatology
ISBN/Barcode 9781107016033
ClassificationsDewey:551.576
Audience
Professional & Vocational
Illustrations 164 Line drawings, unspecified

Publishing Details

Publisher Cambridge University Press
Imprint Cambridge University Press
Publication Date 25 August 2014
Publication Country United Kingdom

Description

Thermodynamics, Kinetics, and Microphysics of Clouds presents a unified theoretical foundation that provides the basis for incorporating cloud microphysical processes in cloud and climate models. In particular, the book provides: * A theoretical basis for understanding the processes of cloud particle formation, evolution and precipitation, with emphasis on spectral cloud microphysics based on numerical and analytical solutions of the kinetic equations for the drop and crystal size spectra along with the supersaturation equation * The latest detailed theories and parameterizations of drop and crystal nucleation suitable for cloud and climate models derived from the general principles of thermodynamics and kinetics * A platform for advanced parameterization of clouds in weather prediction and climate models * The scientific foundation for weather and climate modification by cloud seeding. This book will be invaluable for researchers and advanced students engaged in cloud and aerosol physics, and air pollution and climate research.

Author Biography

Vitaly Khvorostyanov is Professor of Physics of the Atmosphere and Hydrosphere, Central Aerological Observatory (CAO), Russian Federation. His research interests are in cloud physics, cloud numerical modeling, atmospheric radiation, cloud-aerosol and cloud-radiation interactions with applications for climate studies and weather modification. He has served as Head of the Laboratory of Numerical Modeling of Cloud Seeding at CAO, Coordinator of the Cloud Modeling Programs on Weather Modification by Cloud Seeding in the USSR and Russia, Member of the International GEWEX Radiation Panel of the World Climate Research Program and Member of the International Working Group on Cloud-Aerosol Interactions. Dr Khvorostyanov has worked as a visiting scientist and Research Professor in the United States, United Kingdom, France, Germany and Israel. He has co-authored nearly 200 journal articles and four books: Numerical Simulation of Clouds (1984), Clouds and Climate (1986), Energy-Active Zones: Conceptual Foundations (1989) and Cirrus (2002). Dr Khvorostyanov is a member of the American Geophysical Union and the American Meteorological Society. Judith Curry is Professor and Chair of the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology. She previously held faculty positions at the University of Colorado, Penn State University and Purdue University. Dr Curry's research interests span a variety of topics in the atmospheric sciences and climate. Current interests include cloud microphysics, air and sea interactions and climate feedback processes associated with clouds and sea ice. Dr Curry is co-author of Thermodynamics of Atmospheres and Oceans (1999) and editor of the Encyclopedia of Atmospheric Sciences (2003). She has published more than 190 refereed journal articles. Dr Curry is a Fellow of the American Meteorological Society, the American Association for the Advancement of Science and the American Geophysical Union. In 1992, she received the Henry Houghton Award from the American Meteorological Society.

Reviews

'I highly recommend Thermodynamics, Kinetics, and Microphysics of Clouds for atmospheric science professionals and advanced students. Its combination of analytical rigor, up-to-date references, and equations adapted for modeling applications makes it a valuable resource for modelers and experimentalists in cloud physics and climate research. This important work will also challenge readers with its novel approach to the field and provide a fresh perspective that they have likely not encountered.' Nathan Magee, Physics Today